
Как работать с хладагентом

...R410A

Changes for the Better

Содержание

łто такое R410A?	2
Гермины	3
Свойства	4
Работа с трубопроводами	5
Гест на герметичность	7
Вакуумирование	3

Если у Вас появились вопросы, связааные с работами, описанными в данной инструкции, просьба обращаться по адресу:

MITSUBISHI ELECTRIC EUROPE B.V. 115054, Москва

Космодамианская наб., 52, стр. 5 тел. 721-2070 факс 721-2071

www.mitsubishi-aircon.ru

© 01/2005

то такое R410A? R410A

Что такое R410A?

R410A это хладагент пришедший на замену R22.

R410A Он представляет собой смешанные в равных массовых долях хладагенты R32 и R125.

Ни один из составляющих его компонентов не содержит хлора, поэтому их смесь характеризуется нулевым значением потенциала разрушения озона (ODP).

Благодаря повышенной удельной холодопроизводительности стало возможным уменьшить габаритные размеры основных элементов гидравлического контура: теплообменников, трубопроводов и других. К тому же R410A является псевдо-азеотропной смесью, то есть его температура при фазовых переходах практически не изменяется. Поэтому при утечке из системы состав смеси в контуре остается без изменений, что позволяет добавить необходимое количество после ремонта и избежать полной регенерации хладагента.

Вместе с этим новый хладагент характеризуется существенно более высокими значениями рабочих давлений в гидравлическом цикле. К примеру, при температуре конденсации 43°C R22 имеет давление 15,8 атм, а R410A — около 26 атм. Поэтому простая замена R22 новым хладагентом исключена и модернизация оборудования требует внесения конструктивных изменений в элементы гидравлического контура для увеличения их прочности. Так же как и хладагент R407C он не растворим в минеральном масле, и предполагает использование синтетического полиэфирного масла.

При установке оборудования на R410A необходимо придерживаться следующих основных рекомендаций, уже знакомых нам по хладагенту R407C:

- не допускать попадания загрязнений в гидравлический контур;
- ! при пайке трубопроводов они должны быть заполнены инертным или слабовзаимодействующим газом, например, азотом с низким содержанием влаги;
- ! тщательно производить вакуумирование,
- ! дозаправку хладагента осуществлять только в жидкой фазе.

Термины

ODP Потенциал разрушения озона.

Степень разрушения озона стандартизована относительно хладагента R11, значение ODP которого принято за "1". Хладагент R410A имеет ODP=0.

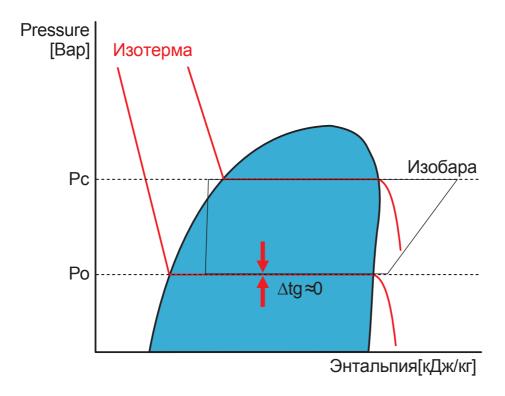
GWP Потенциал глобального потепления.

Потенциал глобального потепления показывает способность газов отражать тепло, сохраняя его в околоземной поверхности при наличии данного газа в атмосфере.

Для сравнения используется газ [CO2], GWP которого принят за "1".

Свойства R410A

Свойства

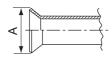

R410A – азеотропная смесь:

Хладагент R410A состоит из смеси хладагентов:

R32 50% R125 50%

Свойства азеотропной смеси:

В отличии от R407C (зеотропной смеси) фазовые изменения в азеотропной смеси происходят при постоянной температуре в процессе конденсации/испарения. R 410A имеет очень малый "температурный глайд" и может считаться азеотропным.



∆tg = Температурный глайд для R410A практически =0 K

Работа с фреонопроводом.

- Используйте только медные дюймовые трубы для фреонопроводов.
 - Размеры обработки раструбов для систем, в которых используется R410A больше, чем для систем с другими типами хладагентов, чтобы повысить герметичность:

наружный диаметр	размер в дюймах	размер А
		R410A
ø6,35	1/4"	9,1
ø9,52	3/8"	13,2
ø12,70	1/2"	16,6
ø15,88	5/8"	19,7
ø19,05	3/4"	24,0

• Минимальная толщина труб для систем на хладагенте R410A:

Размер,мм	Дюймы	Толщина,мм
ø 6.35	1/4"	0.8
ø 9.52	3/8"	0.8
ø 12.7	1/2"	0.8
ø 15.88	5/8"	1.0
ø 19.05	3/4"	1.0
ø 22.2	7/8"	1.0
ø 25.4	1"	1.0
ø 28.58	1 1/8"	1.0
ø 31.75	1 1/4"	1.1

Работа с фреонопроводом.


- Резка труб только с помощью трубореза.
- Тщательно уберите заусенцы.
- Убедитесь что внутрь трубы не попала стружка.
- Паяные соединения должны быть очищены от флюса и окалины.
- Не чистите соединения наждачной бумагой перед пайкой. Припой течет лучше по гладкой поверхности.
- Пайку проводите только под инертным газом.

Используйте сухой азот или другой инертный газ. Пайка без защитного газа приводит к образованию окислов на поверхности труб, которые смываются хладагентом и циркулируют в холодильном контуре.

При высоких температурах в рабочей зоне компрессора эти окислы могут служить причиной разложения хладагента и холодильного масла.

Результат - неисправность установки.

Трубы должны храниться в сухом помещении с герметично закрытыми концами.

Герметичность R410A

Тест на герметичность

Перед вакуумирование необходимо обязательно провести тест на герметичность.

Герметичность гидравлического контура на хладагенте R410A проводиться в следующим порядке:

1 способ

- Контур заполняется сухим азотом до давления 1,0 МПа. Проверяется нет ли падения давления в течение 1-го часа.
- Контур заполняется сухим азотом до давления 4,15 МПа.
- Через 24 часа контролируют изменение давления.

Если давление по истечение 24 часов не понизилось, систему можно считать герметичной.

Давление в контуре, заполненном азотом меняется при изменении температуры окружающего воздуха.

Для определения изменения давления в контуре пользуйтесь формулой: P1/T1=P2/T2,

- где P1, T1 давление в контуре и температура окружающей среды в начале теста.
 - Р2,Т2 давление в контуре и температура окружающей среды в конце теста (спустя сутки).

2 способ

- Контур заполняется хладагентом до давления 0,2 МПа.
- Контур заполняется сухим азотом до давления 4,15 МПа.

Проверка проводиться с помощью электронного течеискателя. (Течеискатель для R22 не способен обнаружить утечку хладагента R410A)

Вакуумирование

Основой корректного фукционирования систем кондиционирования является правильное ваккумирование контура.

Посредством вакуумирования из контура удаляется воздух и влага.

Почему гидравлический контур должен вакуумироваться?

Вакуумирование предотвращает следующие последствия:

- Присутствие неконденсирующихся примесей приводит к повышению давления конденсации и рабочей температуры компрессора.
- Присутствие влаги приводит к разложению холодильного масла и замерзанию дросселирующего устройства.
- Полиэфирные масла, используемые с R410A очень гигроскопичны и поглощают влагу из воздуха.
 В результате химических реакций в гидравлическом контуре образуются кислоты.
- Кислород, присутствующий в воздухе взаимодействует с холодильным маслом, что приводит к выходу из строя компрессора

Для удаления воды из гидравличесокго контура необходимо её испарить понизив давление с помощью ваккумной помпы.

Вакуумирование

Точка кипения.

Температура кипения воды на уровне моря = 100°C. На высоте 4800 м, где атмосферное давление равно 555 мБар вода кипит при 84°C.

Таким образом, чем ниже давление, тем ниже точка кипения воды. Чем ниже температура окружающей среды, а следовательно и температура воды в контуре, тем большее разряжение необходимо создать с помощью вакуумной помпы для удаления влаги.

Ниже приведена таблица, показывающая зависимость точки кипения воды от давления:

t	Ps
5 °C	0,009 bar
10 ℃	0,012 bar
15 <i>°</i> C	0,017 bar
20°C	0,023 bar
25 °C	0,042 bar

Из таблицы видно, что вакуумирование в осенне-зимний период необходимо проводить более длительное время.

Вакуумирование

Параметры вакуумирования.

Для вакуумирования необходимо использовать помпу, обеспечивающую падение давления 65Па за 5мин.

Рекомедуется использовать двухступенчатую помпу с производительностью не менее 8-15м³/ч.

Вакуумная помпа должна быть оснащена обратным капаном во избежание попадания минерального масла помпы в гидравлический контур.

Рекомендуемый тип вакуумной помпы: ROBINAIR 15010H

Продолжительность вакуумирования: после достижения значения вакуума не менее 650 Па продолжать вакуумирование в течение одного часа.

По окончании вакуумирования оставить контур под вакуумом в течение одного часа для проверки на отсутсвие влаги.

По прошествии одного часа допускается поднятие давления в контуре не более чем на 130Па.

Измерительные приборы.

Манометр низкого давления, установленный на манометрическом коллекторе, не подходит для измерения уровня вакуума.

Обычный манометр не обладает достаточной точностью измерения для определения изменения значения давления в системе при вакуумировании.

Необходимо пользоваться вакуумметром.

Рекомендуемый вакуумметр: ROBIAIR 14010

Примечания.

- Перед вакуумированием обязательно проводиться тест на герметичность гидравлического контура.
- Для систем большой производительности рекомендуется после достижения уровня вакуума 650Па заполнить систему сухим азотом до избыточного давления 0,5 Бар. и продолжить вакууумирование.
- Для ускорения процесса необходимо проводить вакуумирование одновременно на линиях нагнетания и всасывания.

Выводы.

Если вы внимательно ознакомились с содержанием данной брошюры, у Вас не возникнет трудностей при использовании хладагента R410A.

www.mitsubishi-aircon.ru

Mitsubishi Electric Europe B.V. Moscow Representative Office 115054 Moscow Kosmodamianskaya nab., 52, building 5 Russian Federation Office phone: +7 095 721 20 70

Fax: +7 095 721 2071